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Summary
Programs incentivizing soil health and regenerative agriculture have been rapidly expanding
at local, state and national levels across the public, nonprofit and private sectors. In parallel,
expectations are growing for the farming community to track changes in ecosystem
properties like carbon levels that result from corresponding changes in management (USDA,
2022; Ogieriakhi andWoodward, 2022; Lenhardt and Egoh, 2023). A need exists to support
standardizedmonitoring efforts with flexible protocols that match available resources and
canmap onto commonly incentivized practices for cropland1 conservation.

In collaboration with partner organizations and individual experts, Point Blue Conservation
Science aims tomeet this need through development of The Crop-CMonitoring Program.
Outputs include a scientifically robust and user-friendly monitoring guide (the Crop-C
Monitoring Handbook) and development of a secure database to scale the impacts of
resulting data.

In its final form the Crop-C Handbook will allow users to create fit-for-purpose sampling
designs and easily pair these with measurement protocols that matchmonitoring
objectives. In addition to providing rigorous standards as a baseline, Crop-C will create
transparency related to data quality. Specifically it will offer guidance regarding which
choices improve confidence in themonitoring data and assign points to decisions that
increase confidence in data accuracy. Examples include takingmore samples from a field,
usingmore sophisticated labmethodologies, andmonitoringmore carbon pools/indicators.
By design, Crop-C users can share their results in a secure aggregated database, with
various options for anonymization. This will enable analysis of the data to expand scientific
understanding of how carbon changes in response to adoption of key conservation
agriculture practices across regions.

This document includes a broad overview of the high-level goals for Crop-C, sampling
design considerations, a suite of carbon indicators (i.e. pools), andmonitoringmethods. This
report does not include a systematic review of all existing carbon accounting protocols, nor
prioritization of which practices or sites sequester more carbon. Instead, the focus is on
supporting farming producers and their community of consultants and technical service
providers with the development of practical and scientifically rigorousmonitoring.

1 Cropland is defined here as agricultural land on which plants are grown for harvest and sale. This
includes cultivated and uncultivated, irrigated and rainfed, conventional and organic lands; from rice to
agroforestry to planted and baled hay fields. It does not include rangelands, hydroponic nor container
plantings. For grazed pasture and rangelands, see Range-C.
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Table 1. Crop-CMonitoring Program Scope

Main objective -Detect impact of practice on above and
belowground carbon on-farm
-Aggregate data to conduct science at
scale to informmanagement

Ecosystem -Cropland

Sampling scale (study area) -Field, block, or plot wheremanagement
practice is implemented (and a control if
possible)

Temporal scale -Project dependent

End-users (who collects data) -Landmanagers (e.g., farmers, land
stewards)
-Technical assistance providers
-Sustainable agriculture programs

Data use -Compliance/performancemonitoring for
incentive programs
-Adaptive croplandmanagement
-Direct-to-consumer storytelling
-Applied scientific research
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1. Introduction
Croplands are a source of food, feed, fiber and fuel as well as culture, livelihood and
connection to natural systems. Covering approximately 12% of global land area (~3 billion
acres), the global influence of farming is the product of innumerable local actions (Potapov
et al, 2022). As it relates to the health of terrestrial and aquatic ecosystems, cropping
decisions can improve and/or degrade regional air and water quality, biodiversity and
associated habitat (Sanaulla et al. 2020; DeClerck et al. 2023).

The past decade has seen a rapid
expansion of regenerative
agriculture and soil health
programs aimed at incentivizing
practices that simultaneously
improve the vitality and
resilience of both farming and
natural systems. A key indicator
of success is the amount of
additional carbon sequestered
within living and organic
materials above and
belowground. This is because
carbon is paramount to
agroecological function. Soils
with higher levels of organic
carbon tend to have increased
fertility, water holding capacity,
and disease suppression (Bradford et al. 2019; Lal 2020). As such, soils richer in organic
matter provide crops with improved resilience to extremeweather like flood events,
heatwaves and periods of drought. In addition, carbon in agricultural soils and biomass is
directly drawn down from the atmosphere via photosynthesis and is widely considered an
important climatemitigation strategy. The agronomic benefits of soil carbon and carbon’s
importance as an ecosystem property is nowwidely recognized as a win-win solution and
has created opportunities for collaboration across farming communities, conservationists
and policy makers alike.

Asmomentum builds in support of increasing on-farm carbon levels, numerous programs
have “cropped up” to advance the adoption of conservation practices by providing technical
service and financial support. Yet, while many of these programs offer recommendations for
what to measure when it comes to carbon, there is often insufficient guidance and/or
flexibility regarding how to take thesemeasurements. This is what the Crop-CMonitoring
Handbook aims to provide.
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Narrowing the Scope: Managing andMonitoring Cropland Carbon
Point Blue Conservation Science is developing Crop-C to support scientifically sound and
fit-for-purposemonitoring of carbon changes in croplands. This scoping paper is the
blueprint for Crop-C development, outlining themotivations for monitoring, potential carbon
indicators andmethods, and conservation-practice considerations. When complete,
established networks of farmers, scientists, and agency staff can utilize Crop-C to ensure
that monitoring efforts are both efficient and effective, using robust standardization. Our
intention is for cropland data to be collected in a rigorous, yet accessible way, such that the
effects of management practices can be analyzed on a site, regional, state, or national scale.
The Crop-C framework will be easy to use, flexible between sites andmanagement
contexts, and consistent enough to be analytically comparable. The resulting Crop-C data
will be harmonized in a central database and leveraged to refine recommendations for best
management practices and potentially inform cropland policies to benefit producers.
Importantly, Crop-C does not provide guidance onmakingmanagement decisions and aids a
land steward after they have decided to implement a practice which they expect to impact
carbon storage at their site.

Setting the Context
As part of a larger project funded through the USDA Climate-Smart Commodities program,
development of the Crop-CMonitoring Program is modeled after the existing Range-C
Monitoring Program. The proposed objectives of this Crop-C scoping paper are to:

1. Establish a framework for the Crop-C Handbook, including identifying key decisions
for effectively monitoring carbon levels in croplands after the adoption of
conservation farming practices; and

2. Support the development of a large-scale verifiable dataset documenting changes in
carbon that can inform future prioritization for cropland stewardship.

As highlighted in Figure 1 below, the final users of Crop-C such as farmers, landowners,
policy-makers, and scientists may bemotivated by different or overlapping interests (e.g.,
economic gains, ecosystem services, scientific understanding), which are supported by a
growing number of funding streams and programs. These include certifications,
regenerative labels, direct-to-consumer storytelling, carbon farm plans, stewardship
initiatives, incentive programs, existingmonitoring networks, and government contracts or
grant programs.
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Figure 1. A conceptual framework for motivations, supportingmechanisms, and primary facilitators
involved in soil carbonmonitoring. Solid lines represent direct connections between entities and
dotted lines represent indirect connections. The Crop-C Program aims to directly or indirectly
support all monitoringmotivations except carbon offset markets, which require special attention
and consideration for Measurement, Reporting, and Verification.

We intend to align Crop-C’s recommendations with existing frameworks for monitoring
changes in agricultural carbon and database development. These include NRCS’ CEMA 221
and Conservation Reserve Program, the Soil Inventory Project (TSIP), and state initiatives
like the CDFA Healthy Soils Program.We intend to highlight how Crop-C aligns and differs
from these key programs. Theremay be ways that Crop-C can offer insights to users
interested in carbonmarkets (e.g. Verra, Nori, Indigo Ag, Gold Standard, BCarbon,
RegenNetwork) but Crop-C is not intended for this purpose. Each carbonmarket has its own
requirements for monitoring, reporting and verification (MRV) and requires considerations
outside the scope of Crop-C like permanence, additionality, and leakage (Oldfield et al.
2021). As such, it is our primary goal to support the broader ecosystem of carbonmonitoring
efforts by enabling interoperability where possible and by filling existing gaps. We are
unaware of another guide, for example, that offers fit for purpose sampling designs based
on users’ site conditions, management practices and desired data accuracy.

It is our intention to use a tiered approach with multiple protocols that can articulate with a
range of monitoring objectives (Billings et al. 2021). Not only would users have the flexibility
to choosemethods that fit their goals and resource constraints, but points can be rewarded
through the tiered system for choosingmethods that are known to bemore precise,
accurate and reliable, as described in the “Data Quality Indexing” section below. This should
help to build a more robust dataset for assessing practice impact across U.S. croplands.

Two advisory committees, a Technical Working Group and PractitionerWorking Group, will
be asked to provide feedback on the scope and objectives of this project and to help
develop key design guidelines.
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FeaturedManagement Practices
The set of management practices included in this scoping paper are common conservation
agriculture techniques and are regularly featured in existing soil health, carbon farming2, and
regenerative agriculture programs. This list cannot be exhaustive, and endeavors to include
practices applied widely in the US and acrossmultiple cropping systems. Each practice is
presented below along with its National Resource Conservation Service (NRCS)
Conservation Practice Standard in parenthesis, where applicable.

Cover Crops (NRCS CPS 340) Crop Rotations (328) Conservation Cover (327)

Soil Carbon Amendments
(336)

Reduced (329) / No-Tillage
(345)

Mulching (484)

Nutrient Management (590) Integrating Livestock
(n/a)

Windbreak (380), Hedgerow
(422)

Figure 2. Proposedmanagement practices featured in Crop-C Handbook, which predominantly map
onto existing NRCS Conservation Practice Standards (CPS).

2 Carbon farming is a term describing agricultural operations in which the accumulation of carbon in soils
and plant biomass is a primary objective.
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Navigating Complexity
In a given farm field, adopting a newmanagement practice can lead to a wide range of
changes to carbon levels. Results can be highly variable due to amyriad of factors including
soil properties, current and previousmanagement, and climatic conditions. Furthermore, the
implementation of a given practice can be performed in various ways. For example, if a
farmer is planting cover crops the results will be influenced by what species are planted,
during what time of the year, howmuch biomass the plants produce, how they are
terminated / returned to the soil, and if the fields are subsequently tilled (McClelland et al,
2020). Each of the nine conservationmanagement practices featured by Crop-C include a
similar spectrum of decisions that can impact ecosystem carbon.

Capturing true field conditions via a series of samples is also obfuscated by field spatial
variability and (un)expected levels of error in lab and field testing (Bradford et al., 2023;
Stanley et al. 2023). Nevertheless, it is possible to turn to decades of scientific research to
find trends that result from adopting carbon farming practices and to account for their
range of potential outcomes (Lal 2004; Paustian et al. 2016; Gelardi et al. 2023). The Crop-C
Handbook factors the aforementioned variability into the planning process for effective
carbonmonitoring.
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2. CarbonMonitoring Design
This section outlines a range of considerations when creating an agricultural carbon
monitoring plan. It is built upon the existing framework laid out by Range-C. The resulting
monitoring plans will be specific to each user, per the wide range of motivations for
agricultural carbon sequestration (see Figure 1).

While we intend to include a brief “Pre-Assessment” to help users validate whether
monitoring for carbon is an effective use of their time and resources, our focus will be on
developing flexible and robust sampling plans. A tiered system (ȧ la Billings et al., 2021) that
offers a menu of design options, indicators, and recommendedmethods can help to support
this kind of approach. We recommend the target audience be technical assistance
providers and engaged land stewards who generally contain more capacity to follow a
sampling plan than the average farmer.

The Crop-C Handbook offers an easy-to-usemonitoring design process that includes
spatial and temporal sampling strategies to precisely detect change in carbon with
treatment over time. The protocols can be applied to fields of size less than 1 acre to 100s of
acres and use sampling schemes that match the ‘footprints’ of each relevant practice (e.g.
linear for hedgerows, dispersed for compost application). We intend for the Crop-C
Handbook to allow users to calculate costs/limitations (e.g., requirement of expert
knowledge or cost of more in-depth lab analysis) to weigh against the potential benefits.
These protocols will consider inclusion of aspects of the existing Range-C Handbook,
including:

Monitoring Elements (detailed below)
Pre-Assessment
Inference Scores

Study Area
Sampling Density
Sampling Locations

Sampling Timing and Frequency
Sample Compositing

FeaturedManagement Practices
Monitoring: Indicators andMethods
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Pre-Assessment
Proposal: Because carbonmonitoring can be a resource intensive process, we feel it is
prudent to ask Handbook users upfront to reflect on whether it is the right decision for their
situation. This brief section will reference themotivations diagram (Figure 1) and offer
considerations to take into account before proceeding. This could include checking if users
have a defined reason tomonitor, as well as a plan for how they intend to use the data
(including contributing to broader efforts through Point Blue’s centralized database and
interpretation tools).

In addition, wemay suggest a cursory evaluation of whether it is reasonable to detect
change in C levels based on the circumstance. For example, there are scenarios where the
likelihood of carbon accumulation - and our ability to detect this change - is limited by
external factors (e.g. sandy soils, dry climates). Where one expects extremely high spatial
variability, low-impact management practices and short project timelines, detecting change
over timemay be impractical.

Considerations: This is a section that was not included in the first edition of Range-C, which
deliberately met users after they had developed goals and decided to pursue carbon
monitoring. The addition of this check-point is aimed toward supporting users in defining
the utility of their Cmonitoring efforts - so that the benefits of doing this work aremore
widely felt and sustained.

This sectionmay include a simple flow chart to help land stewards decide if carbon
monitoring is appropriate. We intend for it to be simple and clear to avoid potential
confusion or paralysis in users regarding how to proceed. It is not necessary for users to
know all the answers; these aremerely considerations to take into account.
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Data Quality Index
Proposal: As with Range-C, when a sampling decision is expected to increase the accuracy,
precision, or statistical inference of the data, it would be considered a “Tier 1” option, versus
“Tier 2” or “Tier 3”. Each tier would have a number of points assigned to it that reflects its
relative impact on the data’s statistical inference. The sum of each tiered decision’s points
would feed into a final “inference score”. This score creates transparency around data
quality for future meta-analysis, with the co-benefit of gamifying the experience and
encouraging users tomake choices that improve the reliability of their results.

Considerations: This approach has already been established and laid out in Range-C
(detailed in Appendix A) and is just starting to be field tested.While wemay not know the full
scope of howwell it works before initiating the development of Crop-C, we hope to be able
to draw on feedback. Ultimately, our decision is whether the pros outweigh the cons to
establish a tiered systemwith inference scores for Crop-C and then how best to do this.

If inference scores are incorporated into Crop-C, the task at hand will be determining how to
adjust the scores fromwhat was decided for Range-C, in a fashion that is defensible.

While we are unfamiliar with other frameworks that assign scores tomonitoring data based
on the rigor of themethods used, confidence levels are common to scientific reporting. The
MonitoringManual for the Bureau of LandManagement’s (BLM) Assessment, Inventory and
Management (AIM) program provides detailed instructions about meeting desired statistical
power and selecting sampling densities in Appendix C. The International Panel on Climate
Change (IPCC) also offers guidance on how they define and use confidence levels that may
be useful here. Nevertheless, this appears to be a novel approach and addsmeaningful
value to the broader effort of validating the impacts of conservation practices on carbon
levels in croplands.
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Study Area
Proposal: The eligible study area will be the entire area where a specificmanagement
practice is implemented on a farm. Typically, this will be at a field, irrigation block, or plot
scale. When possible, we highly recommend including a paired control (i.e., an untreated)
area of the same size and landscape characteristics. Addition of a control site will improve
one’s inference score, as described on the previous page.

Considerations: By including the entire area where amanagement practice is implemented,
there are no upper bounds to the acreage and types of topography included. This invites
spatial variability that, in turn, could make it difficult to identify true changes in carbon
resulting frommanagement. Guidance could include isolating the dominant landscape
expression (soil type, degree and orientation of a slope, etc.) in a given field or area where
themanagement is being implemented. However, a full field-scale sampling plan is not only
reasonable but arguably necessary to accurately track changes across an entire field -
rather than extrapolating from plots or subdivisions of the field (Bradford et al. 2023).

As it relates to control
sites, we recognize
there are conditions
that may prohibit
incorporating them
into amonitoring plan.
These include
difficulty in finding a
comparable site with
matching
characteristics and
management history,
farmer resistance to
set aside land for a
control, and higher
associated lab and
labor costs.
Nevertheless,
having a control offers themaximum amount of inference to disentangle management
impacts from other drivers of temporal change (such as climate shifts)- both at the network
scale and for individual projects (Kimiti et al. 2020). Having a paired treated and control area
also helps tominimize issues with dynamic baselines (Bradford et al. 2023), observer bias,
and laboratory measurement uncertainties. Research has been conducted to determine the
minimum number of samples to capture variability at different scales, even up to
country-wide (Conant and Paustian 2002).
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Sampling Density
Proposal: Adequate sampling density (i.e. the number of samples collected in a given area)
is often lacking in many carbonmonitoring frameworks, as a baseline carbon stock or
change in carbon is often required to calculate the number of samples exactly (Stanley et al.
2023, Kravchenko and Robertson, 2011, VandenBygaart et al. 2011). We plan to help Crop-C
users determine sampling densities for their projects based on threemain factors:

1. Expected spatial variability:We aim to guide users through the process of
categorically assigning their fields as having “high”, “medium”, or “low” expected
spatial variability. This can be done using the table below and selecting the category
in which themost items accurately describe their field. The below table is an example
from Range-C.

Figure 3. Draft of a table for selecting expected
spatial variability in a given field. Users would choose
the category that most applies to their situation.

2. Expected “effect size”: the impact resulting from a givenmanagement practice: We
can use COMET-Farm and the underlying DayCent model (Swan et al., 2015) to
project changes in carbon frommanagement practices. Through an independent
literature review, we also identified expected breadths of change in carbon stocks
resulting from these farmingmanagement practices.

3. Desired level of certainty (i.e. statistical power and confidence): Expected spatial
variability and expected rates of change can be used to inform a power analysis - or
statistical determination of howmany samples need to be collected to accurately
capture change. If a person wants greater certainty in their data, they canmodify the
statistical significance - alpha(ɑ) - and power (1-beta [β]) that they are striving to
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achieve. We propose offering three tiers to Crop-C users, with the following
statistical targets:

- High: p=0.05 (95% chance of capturing a true change);
β = 0.1 (10% chance of missing change);

- Medium: p=0.10 (90% chance of capturing a true change);
β = 0.2 (20% chance of missing change);

- Low: p=0.20 (80% chance of capturing a true change) ;
β = 0.3 (30% chance of missing change).

In general, more samples are necessary when expected spatial variability is high, impacts
frommanagement practices are relatively low, and high levels of certainty are desired.

For every management practice, we suggest creating “look-up tables” to help users
determine howmany samples to take based on the above factors. These look-up tables
create clear sampling size recommendations, thus helping users acquire data that fits their
intended purpose and carries transparency around data quality when it is eventually
aggregated and analyzed. The below figure is an example of a lookup table from Range-C.

Figure 4. Example of a “Look-Up Table” with recommended number of samples
to take per field. Each 3x3 table will be specific to themanagement practice
and the indicator (i.e. carbon pool) being studied.

Considerations:
1. Expected spatial variability - The true spatial variability of a field is typically unknown

ahead of time and, as a result, it is often necessary to estimate using known
influential factors. Some conditions that lead to higher variability can easily be
observed, like changes in slope and orientation. Other factors include howmany soil
types / series are present in a field, or if parts of the field have had different
management histories. Baseline samples can illuminate actual spatial variability and
allow for an evaluation whether the chosen sampling density is adequate to detect a
change over a period of time.
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2. Expected effect size - Expected rates of carbon sequestration (e.g. tonsMg C / ha /
yr) from farmmanagement practices are based on external meta-analyses and
modeling efforts. These values are the best estimates we have, yet they are built on
imperfect data and often contain significant variability in effect sizes. This is to be
expected based on the vast range of options for how amanagement practice is
applied and under what conditions. To increase data reliability, the protocols will
provide general guidance around sampling density and frequency, integrating the
best available data and our mechanistic understanding of terrestrial carbon
sequestration dynamics. As Crop-C protocols are implemented and data is shared
and aggregated across multiple farms, these sample density estimates will continue
to improve.

Figure 5. A simple power calculation estimating the number of soil samples needed based
on the expected absolute change in soil organic carbon (SOC) over a three year period.
Values were drawn from Point Blue Conservation Science’s RangelandMonitoring Network
(RMN) sites, in California. A range of standard deviations is used, although the observed
standard deviation of the RMN samples for SOCwas 0.55 (denoted by the blue line). The
analysis was conducted similarly to Oldfield et al. (2021), using the R software pwr () package
two tailed t-test with an ɑ set at 0.05 for a Type I false-change error rate and 𝜷 of 0.20 for a
Type II missed-change error rate (i.e., a power of 0.80). The first two dotted lines represent
estimated absolute changes in SOC (%) over a 3 year period from peer-reviewed literature in
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California rangelands: (a) 0.046 fromMatzek et al. 2020 and (b) 0.08 fromDahlgren et al.
1997. The inset is meant to help show the number of samples needed to detect SOC change
in RMN data, with dotted gray lines at (c) representing themean change of (0.20) SOC from
0-10 cm (and converted to absolute change) and (d) themean RMN SOC from only sites that
gained carbon, equal to 0.38% from 0-10 cm. The inset also includes two horizontal dotted
lines as a reference at a sample size of 25 and 50.

3. Desired level of certainty - More rigorous sampling designs help to ensure that
results are reliable. In statistics, this reliability is commonly validated using a
significance level – alpha (ɑ) – of 0.05 and a statistical power – (1-beta [β]) – of 0.8 or
higher (McDonald, 2014). When users want to bemore certain that their data is an
accurate reflection of what’s occurring in the field, they will use lower ɑ and β values
to reduce the likelihood that their finding was a fluke.

Certainty levels (ɑ and β)
can bemodified to
reflect real or perceived
costs (economic or
ecological) associated
with a Type I or Type II
error3 (Field 2007). The
certainty levels selected
for Crop-C are widely
adopted in scientific
literature for
determining statistical
significance of the
measured change.

3Here, significance is the probability of rejecting the null hypothesis while it is true (Type I
error or “false positive”) and power is the probability of rejecting the null hypothesis while it
is false (a “true positive”). Using the goal of this monitoring framework as an example, a Type
I error would meanmistakenly concluding there is a response of carbon to a given
management practice when there is not, and could result in incentivizing or relying on
practices tomanage carbon that are not actually effective. In contrast, a Type II error would
mean failing to detect an effect that actually exists andmay result in landmanagers not
receiving credit for building carbon and, at a systems level, eventual removal of effective
practices from the carbonmanagement “toolbox”.
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Sampling Locations
Proposal:
After determining the number of samples to take per field, the location of sampling points
can be established. As a foundation, we recommend following a simple random sampling
design whereby points are randomly selected prior to Crop-C users arriving in the field. This
is a relatively straightforward process for those with a range of technical expertise while still
reducing sampling bias. We suggest using one of twomethods to obtain random points and
locate them in the field:

1. Using the freemapping software QGIS to select points (as briefly described in
Range-C Appendix D), paired with a GPS unit to find them in the field, or

2. Use a random number generator to determine the length along and distance from a
line fromwhich to take samples in the field (as described in Range-C Appendix E).

For users seeking greater sampling efficiencies (via more technical sampling designs), we
propose offering guidance on how to set up stratified and/or spatially balanced sampling
plans (Potash et al., 2023). This would be provided with the caveat that it requires greater
technical skill to effectively set up and later analyze, such that its use will be up to the
end-users’ discretion.

Figure 6. Simple random sampling (left) is planned as the
recommended baseline sampling design for Crop-C users. We intend
to offer instructions for stratified random sampling (center) and
spatially balanced sampling (right) to implement at users’ discretion.
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Distinct instructions and design recommendationsmay be necessary per cropping system
category. We suggest delineating these, as follows:

1. Field crops (including rice and planted/baled hay)

2. Perennial orchards, vineyards, & berries

3. Annual row crops

4. Small-scale diversified

Field crops are the simplest and canmost easily follow the baseline proposal above. One
exception are rice fields, which likely have unique sampling considerations.

For categories #2 and #3 above, the sampling points will be defined by field designated
zones: in-row, in alleys / furrow, or on the shoulders between the two.We propose that users
take one of two approaches:

1. Randomly sample the whole field whereby the number of samples taken from each
zone are proportionate to the relative area of that zone - for example, if 60% of the
field is in-row then 60% of samples are collected from that space, and so on.

2. Sample only from the zone where the effects of a management practice are
expected. Adjust the data on a per acre basis according to howmuch of the field that
zone represents. For example, if cover crops are grown only on the beds of annual
row crops and not on the shoulders or in the furrows, then sample soil from just the
beds. Adjust the final change in C accumulation by the proportion of the area the
bedsmake up in the field.

If the boundaries between the field zones are difficult to distinguish, or the relative area of
each zone cannot be accurately measured, then the first method should be used.

For small-scale, diversified operations, the variability imposed on the landscape by cropping
features is highly varied. One rowmay be used to grow carrots, the next few for grains,
neighbored by a row of trees that borders a small area for grazing. Our current expectation is
that these farms will be encouraged to engage in stratified sampling plans whereby each
zone is distinguished by the four cropping system types above.

We recommend sampling from permanent locations (i.e. returning to the same sites every
time) and using the same samplingmethodology and protocols each time.

Considerations:
At the broadest level, wemust choose between sampling designs that are probability (i.e.,
random) versus non-probability (i.e., non-random) based. Non-probability sampling uses
subjective judgment to determine sampling locations and therefore not all locations within
the study area have an equal chance of being sampled. This creates issues around
representativeness, making it difficult to generalize findings and evaluate precision of
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estimates (EPA, 2002). We therefore suggest making it a requirement that users choose a
probability sampling approach for this monitoring framework.

Probability-based sampling strategies include simple random sampling, spatially balanced
random sampling, systematic sampling, and stratified sampling. Our baseline
recommendation is to use simple random sampling for simplicity's sake. It may be a barrier
to adoption to require more technically demanding sampling designs to an audience with a
wide range of technical skills.

That said, stratified sampling can be combined with simple random sampling to address
areas with distinct conditions in the same field. Stratified sampling involves subdividing the
whole study area into smaller, similar units via geography, landscape features, soil type,
vegetation, management, or any other characteristic that moderates indicator variability
(EPA 2002; Donovan, 2013). Sampling locations are then identified within each strata to
create a stratified sample. For field-scale assessments, this approach has been described as
not only superior, but necessary (Brus et al. 2013). However, stratification requires technical
knowledge and preparation to execute effectively, which if done wrong can actually make
sampling less efficient. Stratification also requires use of more complex analyses to produce
mean and variance estimates, yet more resources have become available on the web to
lower barriers to use (Stratifi, Journada Toolbox, SoilStack). As existing protocols vary in their
use or recommendation for stratification, Crop-C will need to offer careful guidance on
when to stratify. The usefulness of stratification for enhancing efficiencymay also decrease
as the size of the study area decreases, even at a field scale (Potash et al., 2023, section
4.4.2), and often nomore than three strata are recommended within a single project.

Other approaches have been shown to further improve sampling efficiencies (Potash et al,
2023). As such, we see a benefit to offering guidance regarding when and how to implement
other sampling designs to improve sampling efficiency andmake the best use of limited
monitoring resources. Spatially balanced random sampling can overcome some of the
limitations of simple random sampling by identifying random locations that are evenly
dispersed over the study area. This enhances representativeness and efficiency -
particularly when strong spatial trends are present (Kermorvant et al, 2019). One of themost
widely used spatially balanced designs in natural resourcemonitoring is Generalized
Random Tesselation Stratified (GRTS) sampling (Stevens and Olsen 2004), which underpins
the sampling design for Point Blue’s RMN (Porzig et al. 2018) and the Bureau of Land
Management’s AIM program (Herrick et al. 2009). It has been shown to bemore helpful for
increasing precision than stratification in some cases (Lackey and Stein 2013), andmay be a
good sampling strategy to consider for this monitoring framework (especially for practices
that cover relatively large areas).

Systematic sampling via use of a predetermined regularized pattern (with random starting
point) is another way to address some of the limitations of a simple random sampling
approach (Bijleveld et al, 2012). Grid sampling and transects are common examples of
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systematic approaches, but patterns may take other shapes (e.g. triangular) (Willis et al,
2018). In general, this approach should outperform simple random sampling, garnering a
more representative sample due to its uniform spatial coverage (Tan, 2005). Indeed,
systematic sampling is commonly deployed in precision agriculture and soil monitoring
networks, with approximately 44% ofmonitoring schemes in Europe using some form of
systematic approach (van Leeuwen et al, 2017). One limitation of this approach, however, is
that an unbiased estimate of design variance does not exist, making it challenging to
calculate reliable confidence intervals for estimated population parameters (Opsomer et al,
2012; Magnussen et al, 2020). Still, because of its relative simplicity and ability to provide
more precise estimates compared to simple random sampling (Mostafa and Ahmad, 2018),
systematic samplingmay be another sampling strategy to consider, especially for practices
that cover relatively small areas).

For annual and perennial crops grown in rows, it is logistically simpler to collect samples
across the entirety of the field. However, if management practices are limited to specific
zones then it will be amuchmore efficient use of resources to sample from only these zones
and adjust calculations accordingly. It can be hard to imagine a farmer wanting to spend time
andmoney taking soil samples from the furrowed wheel tracks of a tomato field when cover
crops were only planted on top of shaped beds. Yet, if samples are only collected from
specific zones of a field, there are risks. One is having to determine in the field where the
edge of a management practice’s influence will be, even when the intervention is no longer
visible (e.g. a year after compost application). By extension, calculating the portion of the
field that’s represented can invite biases and error, as a shift from 50% to 60% of a field can
impact the final outcomes by asmuch as 20%!

Practices for repeated sampling:
Using permanent sampling locations offers improved precision over selecting new points
each time (Herrick et al. 2009), decreases theminimum detectable difference, and helps to
ensure spatial and temporal differences are not confounded. It is also arguably simpler,
since sampling locations only have to be identified once. It is worth noting that a hybrid
approach also exists, where some proportion of new and existing locations are resampled in
a rotating panel (Nieuwenbroek 1991). This approach helps tomaximize spatial
representation while also capturing temporal variability and is used by the National Park
Service and the Bureau of LandManagement for inventory andmonitoring. Given the
difficulty of overcoming spatial variability at field scales, for the Crop-C protocols we aim to
prioritize precision.
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Sampling Timing and Frequency
Proposal: Ideally, baseline sampling should occur before anymanagement interventions
occur and consistency is maintained in the seasonal timing of sampling across project years.
Thereafter, sampling intervals will depend on themanagement practice being utilized and
can range from 1 year (e.g. compost application) to 10 years (e.g. livestock integration) based
on expected rates of carbon accumulation (COMET-Planner, Swan et al. 2015).

Follow-up samples should be obtained during the same time of year that the original
baseline samples were collected. Generally, we recommend sampling when the effects of
management practices will be easiest to detect. The below are guidelines per carbon pool:

● Aboveground woody biomass: Late-fall to early-spring when trees and shrubs are not
actively growing. This will capture the previous year’s growth.

● Above- and belowground herbaceous biomass: collect during peak biomass before
the plants are harvested, grazed or terminated.

● Soil organic carbon: All samples should match the original sampling dates/season.
Additional recommendations per management practice:

Management Practice When to measure
Crop Rotations End of one or more cycles
Hedgerows and Windbreaks In parallel with woody biomass sampling
Reduced- / no-tillage Prior to typical tillage events (especially when there’s a control)
Carbon Amendments Just prior to application (baseline); same time of year, thereafter

● Other: pH, bulk density and soil texture: Measure in parallel with the above samples.

Considerations:
Many agricultural carbon accounting protocols recommend taking soil carbon
measurements nomore than every 5 years (Oldfield et al. 2021). This is largely because
spatial variability makes it difficult to accurately identify small changes in carbon.Waiting
longer periods allowsmore time for the impact of a practice to accumulate and, therefore,
creates a better likelihood of detecting change. However, it is reasonable for stakeholders to
want to receive carbon accumulation data as soon as it can be obtained. This will depend
partially on themanagement practice’s expected carbon sequestration rates. When
management practices accumulate carbon faster, changes will become detectable sooner.

On a practical level, farmers and researchers tend to engage in trials that have their own
timelines, such as with research that runs one to five years. Detecting changes on
management relevant time scales can be prioritized, and reflected in the look-up tables for
sampling density. At the very least, it may be worth cautioning Crop-C users on the
challenges of reliably detecting change over short durations and particularly when applying
practices known to show slower rates of change, or in conditions that limit carbon
accumulation (e.g. arid climates and sandy soils), although this level of detail may not be
suitable for a broadly applicable, flexible protocol.
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Sample Compositing (Field-Scale)
Proposal:After the number and location of sampling points have been established, we
recommend that users only composite subsamples at each point. For example, taking a few
samples within a foot of the sampling point andmixing these together to represent that
point. We do not recommend compositing samples from different points in the field for the
purpose of preserving variance data. However, keeping the soils separate is not required.
Compositing does not impact the inference score because associated estimates of
information loss are difficult to make without prior data from the field (Stanley et al. 2023).

Considerations:
Sample compositing is a commonly used approach to efficiently capture field conditions
and it is a key decision point for monitoring. The primary benefit is reduced analysis cost, but
it can obscure spatial variability information within the study area (Willis et al 2018), and can
require additional technical/lab replicates due to adding a new layer of variability within the
composite (Stanley et al. 2023; Spertus 2021). These limitations should not be a concern if
the end user composites across areas where they want to capture but not necessarily
understand variation (e.g. at the point scale). This highlights an important decision point to
ensure the farmer or land steward understandsmanagement impacts at the field level, and
the aggregated data proves useful at a broader systems level.

Sample Aggregation (Regional)
Proposal:Aggregating samples across project sites in a region can offer meaningful
statistical advantages that lower the number of samples needed per field, and associated
costs (Bradford et al. 2023). While offering farmers data about what’s happening in their
fields is a primary objective of Crop-C, there are use-cases where regional aggregationmay
be desirable for an organizing body like a company with many suppliers or field sites, or for
place-based initiatives. Because this approach is newer and there are limited resources on
carbonmonitoring that explain how to do this, we are interested in exploring if Crop-C can
fill this gap and support those seeking to aggregate data across project sites, particularly
where quantification of change is not necessary on a per-farm basis.

Considerations:
Aggregation can occur as part of the upfront sampling design (leading to fewer samples and
lower inference scores per field), or can be applied to data after individual field sampling
plans have been administered. In the latter scenario, a higher number of samples would be
taken from a field so that it stands alone in achieving a desired statistical power. However, in
the spirit of Crop-C being a fit-for-purpose guide, the choice to aggregate data from the
onset could be ameaningful feature for those that have this option. In these cases, wemay
encourage users to follow the sampling density recommendations associated with less
spatial variability and lower certainty needs in order to remain aligned with existing
standards.
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Management Practices
Proposal:We recommend featuringmanagement practices that are themost regularly
studied, promoted and impactful interventions. We suggest distinguishing these practices
from one another because they have different expected levels of impact on carbon levels,
and they often warrant their ownmonitoring approaches.

As introduced in Figure 2 above, the proposed practices are:
1. Cover Crops (NRCS Std. 340)
2. Residue and TillageManagement via Reduced Till (329) and No-Till (345)
3. Crop Rotations (328)
4. Soil Carbon Amendments (336)
5. Mulching (484)
6. Conservation Cover (327)
7. Nutrient Management - Nitrogen Fertilizer Reductions (590)
8. Integrating Livestock
9. Establishment of Hedgerows (422) /Windbreaks (380)

When farmers are using Crop-C for practices not listed above, it may be possible to choose
a comparable practice to use as a guide. For example, in some cases alley cropping will be
similar in function to growing a cover crop.

Each project should recordmetadata about management practices, including fertilization,
irrigation, planting dates, etc. These are detailed below on pages 31 and 32.

Considerations:
These practices cover commonly appliedmanagement interventions, and are derived from a
list developed for the “Alliance to Catalyze Transition Incentives through Open Networks for
Climate-Smart Agriculture” (ACTION for CSA) grant. Point Blue Conservation Science is a
partner on this grant, which was awarded by the USDA as part of their Partnerships for
Climate Smart Commodities program.

An underlying assumption behind Crop-C is that a farmer is implementing a practice with
the intent to increase carbon andmonitor changes. Asmentioned above, not all practices
have the same impacts and this can influence sampling density and frequency decisions.
Number 7 above - the reduction of synthetic nitrogen applications via Nutrient Management
(590) - is expected to have N2O reduction benefits but limited to negative effects on soil
carbon. As such, this may not be a good fit for the final Crop-C handbook.

For standardization purposes, eachmanagement practice is associated with a
corresponding NRCS Conservation Practice Standard number, where applicable.
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3.Monitoring: Indicators andMethods
Carbon in cropland is found above and belowground, in living tissues and dead, in organic
and inorganic forms.We provide considerations below regarding which carbon pool
indicators tomeasure and associatedmethods. Tier 1 choices are associated with higher
Crop-C inference scores.

In this scoping paper we focus on empirical carbon field measurements. As such, we are not
focusing on remote sensing tools, which typically require additional technical expertise.

Carbon Pool Methods of Measurement

Tier 1 Tier 2

Soil Organic Carbon Fractionation with dry
combustion. Acid
pretreatment when
carbonates are present. Bulk
density required.

Dry combustion with
optional acid pre-treatment.
Bulk density required.

Soil Inorganic Carbon Pressure calcimeter Dry combustion with acid
pre-treatment

AbovegroundWoody
Biomass

Volumetric measurements
calibrated to estimate
biomass carbon

n/a

Aboveground Herbaceous
Biomass

Cut, dry and weigh biomass
from areas of specific size

Visual estimation, calibrated
to biomass weights

Fine Root Production Extract soil, clean roots, dry
and weigh

n/a

Table 2. List of carbon indicators andmethods planned for Crop-C. These recommendations are built
upon the foundational work associated with developing Range-C. Methods associated with each
indicator are listed in the subsections below.

The abovemethods will be coupled with standardized protocols in the Crop-C Handbook,
which will provide added consistency around the collection, handling and processing of soil
samples. This includes delineating appropriate sampling tools (soil probes, shovels), sample
storage, and how the soils are dried, crushed, sieved and shipped prior to analysis. We intend
to follow the recommendations provided in Range-C, except where special circumstances
for croplands require modifications.
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Indicators and Methods

Soil Organic Carbon
Sample soil to a minimum of 12 inches (30 cm), with a probe or bucket auger. Dividing a core
into distinct depth increments is optional but offers improved chances of detecting change
(Kravchenko et al 2011).

- Tier 1 methodology: Size fractionation and automated dry combustion. If an HCl test
deems carbonates are present, pre-treat with acid to remove inorganic carbon.

- Tier 2 methodology: Automated dry combustion, with optional acid pre-treatment.

To estimate carbon stocks (e.g., tons of carbon per acre), soil bulk density must be
measured. See the bulk density section below (page 31) for more details.

Considerations:
Most agricultural research on soil organic carbon (SOC) focuses on the top 20 to 30 cm,
where carbon concentrations are usually greatest. Often, however, more soil carbon (by
weight) is located deeper in the profile (Potash et al. 2023, Knebl et al, Syswerda 2011,
Raffeld et al. 2024). Sampling below 30cm depth can be difficult without the right tools or
under unfavorable conditions like in rocky soils. And greater sampling depth requires more
sampling time and analysis costs when divided into depth increments. Yet deeper soil
samplingmay be critical to accurately capturing changes to SOC on agricultural land,
particularly for establishing perennial vegetation or adopting no- or reduced-tillage (Olson
and Al-Kaisi, 2015 ). The DayCent model for carbon cycling was recently modified in
September 2022 to convert calculations from the top 20cm to the top 30cm.We selected
30 cm as the recommendedminimum depth, for consistency with DayCent andmost
cropping systems research.

While a 30cm sampling depthmay be adequate in most situations, it may not in others. In
particular perennial cropping systems or conversion to no till can lead to topsoil gains in soil
carbon, but this is regularly offset when evaluating soil profiles to ameter or deeper (Sierra
et al. 2023; Ogle et al. 2012; Blanco-Canqui et al. 2021). As such, theremay be
circumstances where deeper samplingmethodologies will be advantageous.

Soil organic carbon can be estimated in situ, yet is predominantly measured by collecting
samples and sending them to a laboratory for analysis via wet or dry combustion (Chatterjee
et al. 2009). Dry combustionmethods aremore widely used than wet combustion and
include weight loss on ignition (LOI) and automated dry combustion. The LOI method
oxidizes soil organic matter (SOM) in a sample by heating it to a very high temperature and
thenmeasures themass difference to produce a value for SOM. This value can be converted
to SOC using the approximate factor of 0.50 (Pribyl, 2010). However, the LOI method can
decompose inorganic carbon constituents and remove water that may be remaining in the
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sample, effectively overestimating SOM content (Sollins et al, 1999). Despite this limitation,
LOI-derivedmeasurements of SOM content have been shown to correlate strongly with
SOC content via automated dry combustion (Chatterjee et al. 2009) which is considered the
superior method for routine analysis (Sollins et al. 1999, Paustian et al. 2019). Due to its low
cost, LOI is used frequently among the farming community.

Soil fractionation is used to quantify the portion of soil carbon that is bound as particulate
organic matter (POM) vs. mineral-associated organic matter (MAOM). Each pool is
associated with distinct rates of carbon cycling. This is meaningful in the context of Crop-C
as it illuminates the expected longevity that stored carbon will remain in a soil system. POM
is more susceptible to decomposition and has been characterized as having soil residence
times of approximately 1 to 50 years. The chemical bonds of MAOM are less vulnerable to
decomposition and have been described as containing residence times of approx. 10 to
1000 years (Levallee et al. 2020). Fractionation is typically cost-prohibitive outside of
academic contexts but becomingmore readily available; we intend to include it as a tiered
option within Crop-C due to the added definition of landscape carbon that it provides.

Soil Inorganic Carbon
Particularly in dryland environments, soil inorganic carbon (SIC) as CaCO3can represent a
large portion of the soil carbon stocks, which can be affected bymanagement (Lorenz and
Lal, 2018; Naorem et al. 2022; Rasa et al. 2021). For the purposes of these protocols we
focus onmanagement andmeasurements of SOC as an indicator but also plan to support
SICmeasurements in the framework.

Considerations:
While it is difficult to intentionally increase soil inorganic carbon levels through agricultural
management practices, inorganic carbon can still be ameaningful pool of terrestrial carbon.
Especially when tracking changes in total soil carbon levels, distinguishing between organic
and inorganic sources can providemeaningful insights about carbon distribution and cycling
dynamics. This is especially important in alkaline soils that contain more SIC.

AbovegroundWoody Biomass
In the context of Crop-C, aboveground woody biomass will apply primarily to hedgerow and
windbreak plantings. New plantings of woody perennial crops (e.g. shrubs, vines and trees)
do not squarely qualify as a conservation practice; however, such practices influence tree
and shrub crops’ growth and can thereby contributemeaningfully to aboveground carbon
sequestration. In order to calculate howmanagement practices influence orchard growth
rates, a satisfactory control is required and pruning regimensmust be considered.

For hedgerow and windrow plantings we recommend using a volume-based approach to
estimating aboveground carbon stocks at the hedgerow scale. This is effective both for
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mature plantings that have grown into a thicket, as well as new plantings with gaps between
plants. Measure total length, width, and height of the hedgerow and record the values in
Appendix K of the Range-C Handbook (“Hedgerow Biomass” tab). If the hedge has variation
in width and height, then takemultiple measurements at fixed intervals and report the
average. Then, estimate the density of the hedgerow by calculating percent cover by laying a
tapemeasure or rope with regularly marked intervals (we suggest every 5 feet, but distance
can vary depending on how long the hedgerow is) along the length of the hedgerow
(Range-C Handbook Fig. 21, page 55). Record whether the hedgerow canopy covers each
marked interval, and record the number of points covered (i.e., the number of “hits”) in
Appendix K (“Hedgerow Biomass” tab). This information will be used to estimate total
aboveground and belowground biomass.

Considerations:
From a carbon sequestration perspective, aboveground woody biomass is highly relevant
for some practices (e.g. hedgerow establishment) and not relevant for others (e.g., cover
crop). In themost direct and intensivemanner, themeasurement of aboveground woody
biomass involves destructive sampling of biomass and subsequent analysis of plant carbon
content. This approach to sampling and analysis can be time and cost intensive, not to
mention counter to the goals of management. As a result, many protocols implement a set
of allometric equations or models to calculate biomass and subsequently estimate carbon
from reported values and relationships in the literature (Chojnacky et al. 2014). Relatively
straightforwardmetrics, including height and diameter at breast height (DBH), can be used
to facilitate estimation (Dybala et al., 2019) . The California Air Resource Board has amethod
for estimating the carbon stock from biomassmeasurements depending on dominant tree
cover (Battles et al., 2014) . Percent cover estimates are often paired with tree age and
existing tables for common species biomass, such as the EPAMethod for Calculating
Carbon Sequestration by Trees in Urban and Suburban Settings (US DOE, 1998).

Aboveground Herbaceous Biomass
To bemeasured when plants approach peak biomass, whether at their full maturity or just prior
to harvest, termination (e.g. tillage, herbicide application, etc.) or grazing. Maintaining a
consistent time of year and phenological stage for this measurement is critical as it can be highly
variable year to year.

Tier 1: Aboveground biomass can be determined by clipping vegetation to the soil surface from a
hoop or quadrat of known dimension (e.g. 100 cm2), making sure all plants with a primary stem
inside of the area are pulled inside for clipping. Cut the plant flush with the ground, and place the
clipped biomass into a pre-labelled paper bag. Optional to combine two replicates in the same
bag. Do this in multiple locations across the field, per the sampling plan and lookup tables.
Biomass samples are then dried at 65 °C / 150 °F for approximately 48 hours (until there’s no
additional moisture loss) and weighed.
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Tier 2: Estimate biomass visually. Thesemethods require careful initial calibration with actual
plant weights (i.e. destructive harvesting). As such, the first sampling time will usually follow the
Tier 1 method. Visual approximations are made by tossing a hoop or quadrat of known
dimensions (e.g. 100 cm2) in a random direction from themain soil organic carbon point location
and estimate biomass fromwithin the area where it lands. Do this at least three times around a
single point by either 1) using a Robel Pole to determine plant density and estimate biomass; or
by 2) counting the number of plant species occuring with the hoop and using pre-established
weight estimates for each species to determine total forage biomass (by adding all estimated
plant weights together).

Considerations:
Herbaceous biomass cycles quickly relative tomost carbon pools. This should be reflected
in lower inference scores (i.e. number of points) assigned to thesemeasurements.

Aligning sampling dates with peak biomass can be challenging in practice, particularly on
operating farms where weather-dependent harvest windows can be determined day-of.
Accessing grain fields can also be difficult at this stage without damaging crop yields (e.g.
causing lodging). Special considerationmay be needed in these cases.

Fine Roots
Tier 1 (only): Use a hole saw to collect a root core to at least 6-in depth fromwithin 3 feet of
where soil organic carbon was collected.

Separate the roots from the soil by rinsing with water in a No. 40 sieve. Spend a fixed
amount of time (at least 3minutes) removing non-root debris from the samples, such as
plant leaves and sticks. Place the sample and tin in an oven at 150 ℉ for at least 48 hours, or
until constant weight. Remove the tin and spend another threeminutes per sample
discarding any pieces that are conspicuously not roots (e.g., buried bark) (Byrne 2021).
Weigh to the nearest 0.01 gram. Use an Appendix to calculate root biomass as
grams/meter2.

Considerations:
Roots play a critical role in sequestering carbon out of the atmosphere and enhancing soil
properties such as aggregation and structure (Angers and Caron 1998; Rasse et al. 2005).
The production of fine roots is therefore a relevant indicator that relates to carbon
sequestration and soil health. Changes in this indicator may be expected to occur to some
degree across all practices in this framework.

Additional Indicators
We recommend collecting data on the followingmetrics as important contextual variables
for understanding carbon response tomanagement:
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Soil pH: Lab analysis using a 1:2 soil sample to solution of CaCl2 (Tier 1), or in-field using a
hand-held pHmeter (Tier 2) calibrated with buffer solutions. Mix 1 part soil with 2 parts
distilled water (by volume) to make a paste, let it sti for 10minutes andmeasure with the pH
meter. A 15g subsample of soil from a well-mixed soil sample can be used.

Texture: Soil texture using the hydrometer method (Tier 1) will generally be performed by a
service laboratory and is more consistently precise. Soil texture by feel (Tier 2) can be
determined in the field or on air-dried samples in the lab. Collect 40-100g of soil fromwithin
1 foot of themain sampling point and to the same depth.

Bulk Density: This is required for soil carbon quantification. We recommend using the “millet
method” for upper soil horizons, “slide-hammermethod” to greater depths (when digging a
pit is not an option), or the “ruler method” within a probe-hole after extracting a core, as a
last resort. These are described on pages 60 and 61 of the Range-C Handbook. Ideally,
calculate bulk density values on an equivalent soil mass basis as described in the “Fixed
Mass Example” tab of Appendix M in the Range-C Handbook.

Meta-data andManagement Information
Metadata is information about the primary data that is important for tracking
documentation and analysis purposes. It can include information like geographic, location,
soil depth, sampling date, and protocol used.

Collectingmeaningful metadata will be critical to facilitate aggregation and study of data
across the network, especially if and when fit for purpose approaches to data collection are
recommended as part of the framework. Collectingmeaningful management data beyond
the level of presence absence will also be key to help answer questions around practice
impact.

All practices must collect information on farm inputs (fertilizer, irrigation) andmechanical
treatment (tillage, bed preparation). For Range-C, this type of information can be collected
using Appendix P “Practice and Protocol Questionnaire”. We provide potentially relevant
practice-specificmanagement on the next pages (Section 4).
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4. Practice-Specific Considerations
Table 3. Practice-specific details as proposed for Crop-C

Management
Practice Definition*

Expected
Impact*

(Mg C ha-1 y-1)
ManagementMetadata Sampling Considerations

Cover Crops Grasses, legumes and
forbs planted for
seasonal vegetative
cover, typically between
cash crops

0.18 Species planted each year; plantingmethod;
planting density (e.g. seed/acre per plant species);
terminationmethod; irrigated vs. rainfed; inputs
(fertilizer, biocides); years of practice
implementation.

Time of year and stage of plant maturity; Spatial
variability across a field, especially for multi-species
cover crops; root structures (e.g. fibrous vs. taproot);
expected depth of root growth (per plant type and
soil conditions)

Reduced- and
No-Till

Limiting soil disturbance
tomanage crop and
plant residue on the soil
surface year round

0.08
(reduced
tillage)

0.22 (no-till)

Equipment details (seed-drill, tillage implement
types and specs); tillage depth; number of tillage /
cultivation passes per crop; residue cover after
final tillage pass; years of practice implementation

Time of year to sample; variability in residue cover;
tillage depth

Crop Rotations A planned sequence of
crops grown on the
same ground over a
period of time

0.16 Crop types in rotation (incl. ley / pasture); years in
this rotation, planting density (amount of seed per
acre), irrigated vs. rainfed, inputs (fertilizer,
biocides, etc.),

Current phase of rotation; diversity of rotation
(species- & functional); what makes a reasonable
control to compare against; time of year and stage
of plant maturity to sample; plant spatial variability
across a field; expected root depth

Soil Carbon
Amendments

Application of
carbon-based
amendments derived
from plant materials or
treated animal
byproducts

0.89 Application rates (ton/ac; lbs./ft2); type of material
(e.g. compost vs. biochar); feedstocks; application
method / equipment; C:N ratios of amendments;
treatment / processingmethod prior to application;
practice frequency (e.g. yearly or every 3 years),
years since initial practice implementation

How to sample soil only, not amendments; spatial
variability of application rate

Mulching Application of plant
residues or other
suitable materials to the
land surface

0.18 Application rates (ton/ac; lbs./ft2); type of material
(e.g. rice straw); composition of material (e.g. C:N
ratio); practice frequency (e.g. yearly or every 3
years), years since initial practice implementation

Spatial variability of application rate; Removing
mulch from soil sample
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Management
Practice Definition*

Expected
Impact*

(Mg C ha-1 y-1)
ManagementMetadata Sampling Considerations

Conservation
Cover

Establishing and
maintaining permanent
vegetative cover

0.68 Species planted; original planting date; replanting
details; previous land use; land preparations (e.g.
tillage) prior to planting; inputs (fertilizer, biocides,
etc.); rainfed or irrigated

Time of year; spatial heterogeneity in plant
community composition and biomass

Windbreaks /
Hedgerows

Single or multiple rows
of dense vegetation to
reduce winds and/or for
conservation purposes

0.76

(per linear
ft. per row)

Species planted; planting spacing; years since
original planting; re-planting info for subsequent
years; irrigated vs. rainfed; inputs (fertilizers,
biocides, etc.)

Spatial variability (due to species heterogeneity);
accessibility (due to branches / vegetation barriers)

Integrating
Livestock

Managing the harvest of
vegetation with
livestock to achieve
ecological, economic,
and/or agronomic
objectives

TBD Species of livestock; stocking density (e.g. animal
units per acre); height of remaining biomass;
groundcover percentage after grazing.

Sampling before and/or after grazing; changes in
surface soil compaction; physiological maturity of
forage / crops;

Nutrient
Management

Approx. 15% reduction
in synthetic nitrogen
fertilizer rates by
off-setting with organic
matter amendments
such asmanure

-0.03 Nitrogen fertilizer type, applicationmethod, timing
and rates; portion of nitrogen inputs replaced
(0-100%); lab reports on soil nitrogen status (ie.
chemistry and biological cycling)

Timing of application; spatial variability of
application rate.

*Derived from Swan et al. 2015 and USDA-NRCS Conservation Practice Standard (CPS) guides
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